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Abstract

A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based
on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic consti-
tutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and vol-
ume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The
validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-
phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite
element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future
investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive
interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These
biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells,
and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those
presented here.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The lipid bilayer membrane is an ubiquitous structural motif in biology. From the membranes which form
the outer boundaries of cells and cell organelles such as the endoplasmic reticulum (ER), the Golgi apparatus,
and mitochondria, to the transport vesicles which travel within cells, to the membranes surrounding enveloped
viruses such as HIV, lipid bilayers are critical components to a myriad of biological entities. Furthermore, the
mechanics of shape and deformation of bilayer membranes is centrally important for their many cellular func-
tions. [1,2]. Unique flexibility is responsible for the striking membrane conformations observed in the tubules
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and fenestrations of the ER and Golgi [3] and intricate cristae networks of mitochondria [4], as well as for the
ability to generate local regions of high curvature in the budding of transport vesicles and viruses [2]. The
forces necessary to produce and maintain these membrane configurations are the result of interactions of
the membranes with proteins. Similar membrane–protein force interactions govern cell adhesion and the for-
mation of filapodia and lamellapodia for cell motion. Ultimately, a rich understanding of the relationships
among force, geometry, and biological function in each of the cases mentioned above will require quantitative
physical models which respect the biological complexity of membranes containing of multiple lipid types and
intermembrane proteins, and complex membrane and forcing configurations not subject to any artificially
imposed symmetry conditions. Theoretical models of this sort will be necessarily coupled to numerical meth-
ods of solution, such as those presented in this article. The present work is motivated precisely by the drive to
develop more biologically realistic models of membrane mechanics.

Lipid bilayer membranes are composed of amphiphilic lipid molecules which, in an aqueous environment,
self-assemble into bilayers which close to form ‘‘pouches’’ called vesicles. The two-dimensional fluid-like nat-
ure of the lipid monolayers combined with their stiffness in stretching and bending gives the membranes
unique mechanical properties of large deformability and the ability to adopt a wide variety of shapes quite
unlike any macroscopic materials from which shell structures are typically engineered.

The mechanical energy of lipid bilayers is governed by three significant contributions [1]: bending or
curvature of the monolayers; expansion and contraction of the monolayers, i.e. local changes in lipid den-
sity; and osmotic pressure. The energy scales of these factors are conveniently seperable with the energies
of the last two exceeding that of the first by several orders of magnitude [1]. Thus, a common simplifica-
tion is employed by modeling the effects of density change and osmotic pressure with effective constraints
on the total area and enclosed volume of a membrane. The classic bilayer mechanics theory developed by
Canham [5], Helfrich [6], and Evans [7] proposes a lowest-order ‘‘linear elastic’’ bending energy which is a
quadratic function of the principle curvatures of the surface. The equations of equilibrium for the classic
theory, first calculated by Jenkins [8,9], are fourth-order, highly nonlinear, partial differential equations,
and are extremely difficult to solve in general. Hence most analytical efforts have focused on solving
the simplified equilibrium equations for axisymmetric geometries. Fairly complete phase diagrams have
been calculated [10] parameterizing the catalog of stationary vesicle shapes. A few incrementally improved
forms of the curvature energy have also been proposed, most notably the so-called Area Difference Elas-
ticity Model (ADE) [11–14] wherein the Canham–Helfrich–Evans energy is supplemented by consideration
of curvature-induced area changes in the inner and outer monolayers. The ADE model has been shown to
yield a slightly richer set of equilibrium shapes, and has proven more adept at explaining accurately phe-
nomena such as tethering [13].

For nonaxisymmetric membrane geometries, the equations of equilibrium are not amenable to direct solu-
tion. One alternative is to minimize the curvature energy over a reduced subspace of membrane configura-
tions. In the style of a Rayleigh–Ritz procedure, the surface of a vesicle can be approximated as a linear
combination of a set of pre-selected basis functions, and the function weights adjusted to minimize the energy
[5,15,16]. Another alternative approach is to sum discrete finite-difference curvature approximations on a tri-
angulated net, forming a discrete version of the energy, which is then minimized often by a conjugate gradient
algorithm. Variants of this approach have been taken by a number of researchers [e.g. [17–20]], some using the
free software package Surface Evolver by Brakke [21]. Bloor and Wilson [22] have developed a method based
on solution of elliptical PDEs which they have shown to be very efficient for computing nonaxisymmetric equi-
librium membrane shapes. Du et al. [23,24] have developed a phase-field method which is capable of comput-
ing nonaxisymmetric equilibrium shapes, and is the only method available which can simulate changes in
membrane topology.

It is noteworthy that both the direct variational and discrete triangulation approaches bear some resem-
blance to the finite element method [25]. However, very little exists in the literature regarding finite element
treatment of lipid bilayer mechanics. In one related study, Dao et al. [26] modeled the red blood cell with finite
elements focusing on the mechanics of the cytoskeletal spectrin network which dominates the deformation
energy, allowing the bilayer to be neglected.

The finite element method (FEM) can, in fact, be viewed as a hybrid of the Ritz method and the discrete
methods mentioned above. In the context of lipid bilayer mechanics, the local support of the FE basis
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functions is particularly useful, enabling straightforward local application of external loads and/or con-
straints, and allowing for arbitrarily complex geometries. Furthermore, the numerical convergence properties
of FEM are known to be much better than those of local finite-difference techniques [27], which have retained
the most popularity for previous numerical work on bilayers.

Since the bending energy is a quadratic functional of the curvatures, the space of admissible trial functions
is H2, i.e. the space of square-integrable surface functions having square integrable derivatives through sec-

ond-order [27]. Roughly, this is consistent with surfaces which are C1, i.e. having continuous first derivatives.

This requirement, which also applies to the mechanics of thin shells as modeled by Kirchhoff–Love shell the-
ory, has traditionally proven quite difficult to satisfy. As a result, most shell finite elements are formulated to
satisfy the C1 constraint only approximately or via alternative shell theories which do not depend on curva-
ture. The recent development of C1-conforming thin-shell finite elements based on the method of subdivision
surfaces [28,29] created for computer graphics applications has provided a robust alternative to the modified
formulations.

The main objective of this work is development of a finite element framework for simulation of the mechan-
ical deformation and equilibrium of lipid bilayer membranes. Toward this objective, C1-conforming subdivi-
sion finite elements are employed to represent membrane geometry, and the classic Canham–Helfrich–Evans
model of bilayer bending energy is combined with global constraints on membrane area and enclosed volume
to form a discrete energy minimization problem. Effectiveness of the FE framework is demonstrated through
the calculation of equilibrium shapes for several combinations of prescribed vesicle area and volume, results
which are validated by comparison to axisymmetric calculations found in the literature. In carrying out these
calculations some subtle but important issues emerge pertaining to the enforcement of area constraints, use of
numerical quadrature, and the need for stabilization of tangential nodal motions. Strategies are developed to
deal with these issues. Though ultimately it is desirable to extend the FE framework for more complex bilayer
modeling, the present work considers membranes with uniform material properties, subject to no external
forces other than the pressure implicit with the constraint on volume.

By way of outline, this paper continues in Section 2 with the variational formulation of equilibrium for the
classic Canham–Helfrich–Evans bilayer mechanics model, along with a discussion of strategies for enforcing
global constraints on membrane area and enclosed volume. Section 3 formulates the finite element discretiza-
tion of the variational membrane mechanics problem. Section 4 presents the calculation of constrained equi-
librium shapes validating results against previous work from the literature. Section 5 concludes with discussion
of results and thoughts about future development and applications.
2. Lipid bilayer mechanics

As noted above, a lipid bilayer membrane can be described mechanically as a deformable fluid surface.
Inextensibility of this surface and its inability to sustain local shear stress leave bending as the most significant
mode of deformation, with the strain energy of the membrane depending on the curvatures of the surface. Bal-
ance of osmotic pressure across the membrane surface also fixes the volume enclosed within a vesicle, and thus
equilibrium shapes of vesicles are minimal bending energy surfaces which respect equality constraints on area
and volume. Seifert [1] provides an good introduction to the formulation of models for bilayer shape mechan-
ics and a thorough review of the related literature. Here the geometry and kinematics of surfaces are reviewed
briefly after which the bilayer energy is introduced and the variational problem formulated in a weak form
suitable for approximation by the finite element method.
2.1. Kinematics

The bilayer membrane is described as a two-dimensional surface embedded in three-dimensional space.
Details regarding the geometry of surfaces can be found in any of the standard texts on differential geometry
(e.g. [30,31]). Let M represent a membrane surface, parameterized by curvilinear coordinates {s1, s2}, such that
its position vector x 2 R3 is given by the map x = x(s1, s2), as depicted in Fig. 1. The (covariant) basis vectors
corresponding to the curvilinear coordinates (sa) are



Fig. 1. Geometry of a surface.
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aa ¼
ox

osa
� x;a: ð1Þ
The summation convention is implied with Greek indices taking values of 1 and 2, and comma is used to
denote partial differentiation with respect to the surface coordinates. For later reference, the dual (contravari-
ant) basis vectors aa are defined such that aa � ab ¼ da

b. The covariant and contravariant components of the
surface metric tensor in turn follow as
aab ¼ aa � ab; aab ¼ aa � ab; ð2Þ

respectively. The infinitesimal element of area over the surface M at point (s1, s2) is then
dS ¼
ffiffiffi
a
p

ds1ds2 �
ffiffiffi
a
p

d2s; ð3Þ

where

ffiffiffi
a
p

is the surface measure and a is the determinant of the covariant metric tensor a = |aab|. The shell
director d ” a3, defined as the unit normal to the surface, has the properties
aa � a3 ¼ 0 ja3j ¼ 1; ð4Þ

and the explicit form
d � a3 ¼
a1 � a2

ja1 � a2j
¼ a1 � a2ffiffiffi

a
p : ð5Þ
The symmetric curvature tensor B is defined having covariant components
bab ¼ �d ;a � ab ¼ d � aa;b ¼ bba: ð6Þ

Bilayer mechanics is most naturally described in terms of two invariants of the curvature tensor, the mean

curvature and Gaussian curvature. The mean curvature is one half of the trace of the curvature tensor
H ¼ 1

2
trðBÞ ¼ 1

2
ba

a ¼ �
1

2
aa � d ;a; ð7Þ
and the Gaussian curvature is the determinant of the curvature tensor
K ¼ detðBÞ ¼ jba
bj: ð8Þ
2.2. Energy and the variational problem

To lowest order, the bending energy of the membrane is quadratic in the curvatures, and may be written
E½x� ¼
Z
M

1

2
KCð2H � C0Þ2 þKGK

� � ffiffiffi
a
p

d2s: ð9Þ
Here KC and KG are the bending modulus and Gaussian saddle-splay modulus, respectively, and C0 is the
so-called spontaneous curvature which reflects any initial or intrinsic curvature of the membrane. Spontane-
ous curvature may be nonzero due, for example, to splayed geometry of individual lipids; however, such
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effects are often mitigated by the slow process of flipping of lipids from one layer to the other [1]. If the
Gaussian modulus is uniform over a membrane surface of fixed topology with genus g, then the Gaussian
curvature integrates to a constant

R
M

KdA ¼ 4pð1� gÞ by the Gauss–Bonnet theorem [30]. In this case, the
Gaussian term in (9) is topologically invariant and its first variation is identically zero, such that this term
has no effect on the resulting equilibrium equations. Here this is assumed to be the case. It is notable that
since its effect is absent from the governing equations, the Gaussian modulus has eluded direct measure-
ment. The model developed from the energy (9) is attributed to Canham, Helfrich and Evans, who intro-
duced it independently [5–7].

If a membrane is under the influence of a conservative external load with potential Vext, such that
P[x] ” E[x] + Vext[x] is the total potential energy, then according to the principle of minimum potential
energy, stable equilibrium configurations follow as minimizers of P. Nonconservative loads can also be con-
sidered variationally via the principle of virtual work; however, here minimum potential energy is invoked to
provide a simple and clear framework for enforcing global constraints on area and volume. As noted above,
energy minimization must be effected in the presence of global constraints on the total area and enclosed vol-
ume of the membrane. For fixed total area �A and enclosed volume V , we denote the space of admissible mem-
brane configurations as
H 2
AV ðMÞ ¼ fx : x 2 H 2ðMÞ;A½x� ¼ �A; V ½x� ¼ V g; ð10Þ
where A[x] is the total area and V[x] is the enclosed volume of the membrane with shape x, and H 2ðMÞ is the
Sobolev space of square-integrable functions having square-integrable partial derivatives through second-or-
der. In other words, the space of admissible trial functions is the subspace of H 2ðMÞ the members of which
satisfy the area and volume constraints. Therefore the constrained minimization problem for equilibrium
membrane configurations may be written
min
x2H2

AV ðMÞ
P½x�: ð11Þ
For most areas and volumes this problem exhibits a lack of convexity which is manifested in the existence of
multiple equilibrium shapes. One of the benefits of the energy minimization framework is that the energies of
these local minima can easily be compared to evaluate the relative likelihood of their physical realization.
Given that membrane bending energies are typically a couple of orders of magnitude larger than kBT [1] it
is reasonable to expect that thermodynamic equilibrium shapes will be global minimizers. This has in fact been
born out by experimental evidence indicating the dominance of global energy minimizers over higher-energy
local minimizers [1].

2.2.1. Constraints

The governing equilibrium equations for (9) were first derived by Jenkins [8,9] as the Euler–Lagrange equa-
tions of (11) using Lagrange multipliers to satisfy constraints. Enforcement of constraints with multipliers in
the context of direct variational methods (such as FEM) has the awkward consequence of changing the min-
imization problem (11) to a saddle-point problem which can be more difficult to handle numerically. Thus, a
penalty approach [32,33] is followed in this work, to approximate the constrained minimization problem (11)
as an unconstrained minimization problem by adding terms to the potential energy functional which penalize
violations of the two constraints
min
x2H2ðMÞ

I ½x�; ð12aÞ

I ½x� ¼ P½x� þ ls

2
ðA½x� � �AÞ2 þ lv

2
ðV ½x� � V Þ2; ð12bÞ
where ls and lv are arbitrarily large positive numbers chosen to enforce the constraints to within a desired
precision.

An important feature of both the original (9) and modified (12b) energy functionals is that the depen-
dence on the surface map x(s1, s2) is invariant upon changes in parameterization [34]. In other words, these
functionals depend on the shape of the membrane surface, but not on the coordinate parameterization of
the shape. From the perspective of continuum mechanics, parameterization invariance of the bilayer energy
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is associated with the lack of a well-defined reference configuration, mapping the individual lipids to refer-
ence positions in space. This feature is not shared by solid shells, the materials of which are sensitive to in-
plane tensile, compressive, and shearing deformations which expressed locally in terms of first derivatives of
the surface position map as parameterized in both the reference and deformed configurations. Local
stretching and shearing of the deformed parameterization of a bilayer is not physically relevant since it can-
not be meaningfully compared to a reference parameterization. This is an important consequence of the
fact that lipids can flow on the deformed membrane surface, in turn enabling the bilayer to accommodate
extreme shape changes inaccessible by solid shells. One important result is that bilayer membranes are only
able to support external forces applied in the direction normal to the surface, and not tangentially applied
forces.

In light of the bilayer energy’s parameterization invariance, one convenient and slight modification of (12b)
involves exchanging the global area constraint for a local one. Since tangential motions of individual material
points are not tracked within the fluid bilayer, local and global incompressibility are equivalent. Since the total
area is given by A½x� ¼

R
M

ffiffiffi
a
p

d2s the area constraint can be enforced locally by penalizing changes in the local
surface measure
I ½x� ¼ P½x� þ ls

2

Z
M

ð
ffiffiffi
a
p
�

ffiffiffi
�a
p
Þ2d2sþ lv

2
ðV � V Þ2; ð12cÞ
where
ffiffiffi
�a
p

is some (any) measure for which �A ¼
R
M

ffiffiffi
�a
p

d2s. This local penalty functional is employed in the
subsequent development to aid in stabilizing tangential motions of finite element nodes on the meshed surface.

2.2.2. Weak form

In this variational context, the finite element approach avoids direct use of the membrane equilibrium equa-
tions, i.e. the strong form of the equilibrium statement, and rather discretizes the weak form obtained from the
first variation of the energy, as formulated here. For arbitrary admissible variations of the membrane surface
dx 2 H 2ðMÞ, the first variation of the total potential energy functional is
dP ¼ d
Z
M

KC
1

2
ð2H � C0Þ2

ffiffiffi
a
p

d2sþ dV ext

¼
Z
M

KC2ð2H � C0ÞdH
ffiffiffi
a
p
þKC

1

2
ð2H � C0Þ2d

ffiffiffi
a
p� �

ds1ds2 �
Z
M

f ext � dx
ffiffiffi
a
p

d2s;
where f ext is a conservative external force distributed over the membrane surface. The variations of the surface
measure and mean curvature are easily computed as,
d
ffiffiffi
a
p
¼

ffiffiffi
a
p

aa � daa;

dH ¼ � 1

2
aa � ðddÞ;a þ

1

2
aabd ;a � dab;
such that dP can be written
dP¼
Z
M

KCð2H �C0Þaabd ;aþKC
1

2
ð2H �C0Þ2ab

� �
� dab�KCð2H �C0Þaa � ðddÞ;a � f ext � dx

� � ffiffiffi
a
p

d2s;
or more concisely,
dP ¼
Z
M

na � daa þma � dd ;a � f ext � dx½ �
ffiffiffi
a
p

d2s; ð13Þ
where stress and moment resultants, na and ma, respectively, have been defined as
na ¼KCð2H � C0Þaabd ;b þKC
1

2
ð2H � C0Þ2aa ð14aÞ
and
ma ¼ �KCð2H � C0Þaa: ð14bÞ
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The first variation of the penalty-modified energy functional (12c) can then be formed as
dI ¼ dPþ ls

Z
M

ð
ffiffiffi
a
p
�

ffiffiffi
�a
p
Þd

ffiffiffi
a
p

d2sþ lvðV � V ÞdV :
By the divergence theorem, the volume can be written
V ¼
Z

V
dV ¼

Z
V

1

3
r � xdV ¼ 1

3

Z
M

x � d
ffiffiffi
a
p

d2s;
and thus its variation is
dV ¼ 1

3

Z
M

½d � dxþ x � dd þ ðx � dÞaa � daa�
ffiffiffi
a
p

d2s ¼ 1

3

Z
M

fd � dxþ ½ðx � dÞaa � ðx � aaÞd� � daag
ffiffiffi
a
p

d2s:
dI can then be written as
dI ¼
Z
M

n̂a � daa þma � dd ;a � f̂ ext � dx
h i ffiffiffi

a
p

d2s; ð15aÞ
where n̂a and f̂ ext are effective stress resultants and an effective external force, modified to include terms from
the area and volume constraints
n̂a ¼ na þ lsð
ffiffiffi
a
p
�

ffiffiffi
a
p

0Þaa þ lvðV � V Þ
3

½ðx � dÞaa � ðx � aaÞd�; ð15bÞ

f̂ ext ¼ lvðV � V Þ
3

d � f ext: ð15cÞ
The condition for equilibrium in the weak form is stationarity of the energy functional, dI = 0. Integration
by parts of the terms involving daa and dd,a would yield the equilibrium (Euler–Lagrange) equations. These
local or point-wise equations of equilibrium relate derivatives (up to fourth-order) of the position x to the
externally applied load. The finite element approach avoids direct involvement of the local equilibrium equa-
tions, by introducing approximations of the fundamental unknown field x into the weak form (15). In partic-
ular, this field along with the corresponding test functions dx are restricted to a discrete subspace of functions
defined by the finite element approximation as introduced in the following section.

3. Ritz-style finite element approximation

Following the Ritz strategy, the minimization problem (12a) is replaced by an approximate problem, min-
imizing the energy functional I[x] over a finite-dimensional subspace Uh � U, where U ¼ H 2ðMÞ is the full
space of admissible solutions; i.e.
min
xh2Uh

I ½xh�: ð16Þ
Letting fN aðs1; s2Þ; a ¼ 1; . . . ;Ng be a basis spanning Uh, the Ritz trial functions xh can be written as linear
combinations of basis – or shape – functions Na,
xhðs1; s2Þ ¼
XN
a¼1

xaN aðs1; s2Þ: ð17Þ
The approximate minimization problem (16) then becomes an algebraic minimization problem for the
weighting coefficients xa 2 R3,
min
x2R3N

IhðxÞ; ð18Þ
where xT ¼ fxT
1 ; . . . ; xT

Ng and Ih(x) = I[xh]. The stationarity condition for Ih(x) can be obtained by substituting
(17) into the weak form (15) along with Ritz test functions
dxhðs1; s2Þ ¼
XN
a¼1

dxaN aðs1; s2Þ: ð19Þ
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The arbitrariness of the test weights dxa leads to a set of nonlinear algebraic equations representing the bal-
ance of generalized forces work-conjugate to the Ritz coefficients,
f a ¼
oIh

oxa
¼
Z
M

n̂a � oaa

oxa
þma � od ;a

oxa
� f̂ extNa

� � ffiffiffi
a
p

d2s ¼ 0: ð20Þ
The following identities can easily be shown to hold
oaa

oxa
¼ Na;a1;

od ;a
oxa
¼ ð�Na;b½ab � d�Þ;a ¼ �Na;ba½ab � d� � N a;b½ab

;a � d� � N a;b½ab � d ;a�;
such that the resultant generalized forces are, more explicitly,
f a ¼
Z
M

n̂aN a;a �ma � ðNa;b½ab � d�Þ;a � f̂ extN a

h i ffiffiffi
a
p

d2s:
The Hessian or tangent stiffness of the energy, which is useful for Newton-type minimization algorithms,
can be computed by a second differentiation of the residual nodal forces, kab ¼ of a

oxb
. However, in the present

work this calculation is omitted, as energy minimization calculations employ a nonlinear conjugate gradient
solver which does not require the Hessian.

The greatest challenge in carrying out a Ritz procedure lies in the choice of an appropriate basis set {Na}
which provides desirable approximation properties as well as efficient numerical evaluation. The finite ele-
ment flavor of the Ritz method excels in both of these regards by defining interpolating polynomial basis
functions with local support over small polygonal subdomains(elements) in an unstructured mesh. Histor-
ically, construction of C1-conforming FE interpolants has proven extremely awkward, requiring the incor-
poration of nodal values of higher derivatives of the unknown field into the interpolation formula (17) [27].
The demand for C1 elements in engineering plate and shell analysis has motivated a variety of approaches
all attempting to work around the C1 requirement, either by approximating it or by resorting to Reissner–
Mindlin thick-shell theories which require only C0 interpolation. Recently however, the method of subdivi-
sion surfaces has dealt with the C1 requirement in an exact way, while also avoiding the use of nodal
derivatives.

3.1. Subdivision thin shell finite elements

The method of subdivision surfaces, which is popular for modeling of smooth surfaces in computer graph-
ics and geometric design [35], has been established recently [28,29] as a general paradigm for finite element
analysis of thin shells in engineering. The triangular subdivision shell finite elements developed in [28,29] based
on the Loop subdivision scheme [36] address the C1 requirement by relaxing the properties of strict interpo-
lation and locality. As discussed in detail in [28] and demonstrated graphically in Fig. 2(a), the subdivision
shape function for a node of the triangular mesh has support which extends not just over the triangles con-
nected to the node, but also to adjacent triangles. It can also be seen that the computational (limit) surface
is approximating rather than interpolating as it does not pass through the nodal points, but rather defines a
smooth surface approximating the control mesh.

Each subdivision shape function has a support which covers not only the triangular elements connected to
the corresponding node, but also next-nearest-neighbor elements. As a consequence, the domain of an indi-
vidual element e coincides with the support of shape functions in the one-ring of Ne control mesh vertices
connected to e and elements adjacent to e (see Fig. 2(b)). Thus the Ritz approximation of the membrane sur-
face can be evaluated over the domain of a triangular element e in terms of the nodal positions and shape
functions of its one-ring,
xhðs1; s2Þ ¼
XNe

a¼1

xaNaðs1; s2Þ: ð21Þ



Fig. 2. C1 Loop subdivision shell elements. (a) C1 limit surface (blue) approximating a control mesh (black). (Details regarding the precise
analytical form of the subdivision shape functions and evaluation of the limit surface are found in [28].) (b) The one-ring of vertices
(numbered) surrounding a typical element. The domain of the center element overlaps with the shape functions of (one-ring) vertices
connected to element and adjacent elements. (For interpretation of reference to colour in this figure legend, the reader is refered to the web
version of this article.)
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The energy, area, volume, and force integrals are summed over the entire membrane surface. As the surface
domain is discretized by a finite element mesh, integrals are computed as the sums of single-element contribu-
tions, each of which is an integral over the domain of an individual element. For example, the nodal forces (20)
are evaluated in pieces over the element domains Me; e ¼ 1; . . . ;E and summed as
f a ¼
XE
e¼1

f e
a; f e

a ¼
Z
Me

n̂a � oaa

oxa
þma � od ;a

oxa
� f̂ extNa

� � ffiffiffi
a
p

d2s:
3.2. Numerical quadrature

In practice, the element integrals are approximated by numerical quadrature. For instance, the contribution
of a single generic element to the residual force at node a is computed as
f int
a ¼ �

XQ
p¼1

n̂a � oaa

oxa
þma � od ;a

oxa
� f̂ extN a

� � ffiffiffi
a
p� �

ðs1
p ;s

2
pÞ

wp; ð22Þ
where ðs1
p; s

2
pÞ are the parametric coordinates of the quadrature points in the element, wp is the corresponding

quadrature weight, and Q is the number of quadrature points. For convenience in applying the quadrature
rule, the barycentric coordinates of each triangular element may be chosen as the covariant surface coordi-
nates ðs1

p; s
2
pÞ. Clearly an element will only have a contribution to the residual force at node a if the support

of the shape function Na extends to the triangular domain of the element. One of the most convenient features
of the finite element method is the fact that the shape functions have local support, i.e. their support extends to
a neighborhood of node a containing the domains of only a few elements. For standard finite element shape
functions, that neighborhood contains only the elements adjacent or connected to node a. For the shape func-
tions used in this work, the neighborhood contains adjacent elements and elements in the one-ring surround-
ing those adjacent elements, as discussed above.

For engineering materials in [28,29], it has been shown that first-order (one-point per element) Gaussian
quadrature is sufficient to obtain theoretical convergence rates and high accuracy. However, in the context
of bilayer mechanics, this is not trivially the case. In contrast to shells of traditional engineering materials
which are sensitive not only to bending, but also to shearing and stretching deformations, bilayer strain energy
is dependent only on the mean curvature of the membrane surface. Evaluation of the bilayer energy with one-
point quadrature results in the emergence of spurious, zero-energy, deformation modes for the finite element
mesh. Eigenvalue analysis and numerical experiments confirm that these modes are consequences of the insen-
sitivity of the membrane energy to dilatational and shearing deformations. In particular, many of these modes



Fig. 3. Spurious shear-like zero-energy modes on a spherical vesicle under-integrated with one-point quadrature. Arrows and color
indicate nodal displacements given by eigenvectors corresponding to zero eigenvalues of the stiffness matrix (computed by numerical
differentiation of the residual forces). The deformations indicate shear-like ‘‘flow’’ of the nodes on the surface of the vesicle. (For
interpretation of reference to colour in this figure legend, the reader is refered to the web version of this article.)
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are suppressed by enforcing the area constraint locally via Eq. (12c) as discussed above; however, the spurious
shear-like modes can not be completely stabilized in this way. Numerical experiments have shown that eval-
uation of the locally penalized energy (12c) with one quadrature point per element does indeed produce a non-
positive-definite stiffness, and multiple unstable spurious modes, most of which can be easily interpreted as
shearing deformations as shown in Fig. 3. Fortunately, the situation is somewhat improved through the
use of second-order (three-point) Gaussian quadrature. Numerical experiments reveal that fewer spurious
modes are present with the three-point rule, and that those remaining are not easily excited in a typical anal-
ysis. For this work, simulations have been performed minimizing the total energy via iterative nonlinear con-
jugate gradient (CG) methods [33]. Since the stiffness matrix is not required by the nonlinear CG algorithm, its
singularity does not prevent solution of the equilibrium equations; however, it does slow the solution process
as the solver is required to explore an energy landscape which is flat in the directions defined by the spurious
modes. In this respect, efficiency is largely dependent on the sophistication of the line search technique
employed by the CG method. A line search algorithm satisfying the strong Wolfe conditions described in
Nocedal and Wright [33] has provided robust performance in the present calculations. In addition, numerical
techniques using viscous regularization are currently being investigated for their ability to speed up the solu-
tion process.

4. Example – shape vs. reduced volume

In this section, the results of a series of numerical simulations are presented to verify and validate the pres-
ent finite element method for bilayer membrane mechanics. These simulations were carried out by nonlinear
conjugate gradient minimization of the energy functional (12c) discretized with susbdivision shell finite ele-
ments as discussed in Section 3. Local enforcement of the area constraint is combined with a three-point quad-
rature rule for numerical integration in order to stabilize spurious zero-energy deformation modes.

Even under the simplest conditions possible, in the absence of any externally applied force, bilayer vesicles
exhibit rich mechanical behavior. The two constraints on area and volume conspire together to yield a variety
of energy minimizing vesicle shapes as observed in nature. A quick inspection of the Canham–Helfrich–Evans
energy (9) notes that the quantity

R
M

H 2dA is dimensionless, indicating that for C0 = 0 the energy is scale-

invariant. As a result, the ‘‘phase-space’’ of equilibrium shapes under zero external force, can be parameterized
by two-dimensionless numbers, the reduced spontaneous curvature, c0, and the reduced volume v, defined by
c0 ¼ C0R0; v ¼ V

ð4p=3ÞR3
0

; ð23Þ
where R0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
is the radius of a sphere with the area A of the vesicle. Rewriting these in terms of A gives
c0 ¼ C0

ffiffiffiffiffiffi
A
4p

r
; v ¼ 6

ffiffiffi
p
p

V

A3=2
:
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The reduced volume is the ratio of the current volume of the vesicle and the maximum volume that the cur-
rent total area of the membrane can ensphere. For example, a fully inflated, spherical vesicle of area A ¼ 4pR2

0

has volume V ¼ 4
3
pR3

0 and reduced volume v = 1, whereas a completely collapsed vesicle of the same area has
volume V = 0 and reduced volume v = 0. For values 0 < v < 1, a vesicle is partially under-inflated, and the
resulting shape(s) are determined by equilibrium, i.e. minimization of the Canham–Helfrich–Evans energy.
The library of axisymmetric equilibrium shapes corresponding to different choices of reduced volume and
spontaneous curvature has been mapped out in a shape phase diagram [10]. At present, the only nonaxisym-

metric shapes to be been identified as minimizers of the Canham–Helfrich–Evans model energy are shapes of
nonspherical topology (e.g. [24,37]).

For the current work, spontaneous curvature is taken to be zero, and the finite element method is used to
simulate equilibrium at several values of reduced volume. For each choice of reduced volume, the CG relax-
ation starts from roughly spherical original mesh, shown in Fig. 5(a), which has a reduced volume of approx-
imately one (not exactly one because the polynomial FE approximation is incapable of representing a sphere
exactly). The constraint on reduced volume is enforced by setting the constraint area A to be the area of the
original sphere-like shape, and setting the constraint volume V to be proportional to the original volume by
factor v. Thus, for each simulation, the starting shape is in violation of the volume constraint, and is subject to
a large pressure as defined by the penalized energy functional. The energy is then relaxed by conjugate gradient
minimization and the resulting shapes and energies are compared to axisymmetric results from the literature.
In order to achieve faster convergence of the nonlinear CG solver, the penalty coefficients ls and lv were cho-
sen to produce somewhat ‘‘soft’’ constraints on area and volume, such that the computed area and volume
combined to yield a reduced volume v which was accurate to within a factor of 10�3 of the desired value.
The resulting energies are tabulated in Table 1, normalized by the energy of a spherical vesicle (with v = 1),
E0 ¼ 8pKC.

For verification purposes, the finite element results are superposed over results obtained from integration of
the axisymmetric Euler–Lagrange equations by Seifert [1] in Fig. 4. The figure clearly indicates agreement
of the present results with those from the literature. One important feature revealed by Fig. 4 is the existence
of multiple equilibrium shapes throughout the range of reduced volume. The three-dimensional equilibrium
vesicle shapes corresponding to different reduced volumes are shown in Fig. 5, with each of the three different
classes of equilibrium shapes (prolate, oblate, and stomatocyte) represented. Each of the simulations employed
the same mesh (roughly spherical at initialization, as shown in Fig. 5(a)) made up of only 162 vertex nodes and
320 elements. Despite the relative coarseness of the meshes, the actual computational limit surfaces produced
Table 1
Vesicle energy as a function of reduced volume

v 1.0 0.9 0.8 0.65 0.58
E

8pKC

1.0 1.19 1.40 1.83 2.01

E
/8

π

v

Seifert et al. (1991)

Present FEM result

C

0              0.2             0.4              0.6            0.8               1
1

1.5

2

2.5

Fig. 4. Vesicle energy vs. reduced volume – comparison with axisymmetric results of Seifert et al. [10].



Fig. 5. Control meshes and limit surfaces of equilibrium shapes at various reduced volumes.
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by the subdivision surface approximation basis functions are clearly quite smooth. The accuracy of the sub-
division finite elements allows for the use of much coarser meshes than the finite-difference triangulation meth-
ods, which require more than an order of magnitude more vertices (e.g. 4000 in [18] and 2500 in [20]). This can
yield a significantly smaller computational cost for the finite element approach over the finite difference meth-
ods. When the computational cost scales worse than linearly in the mesh size – as it does for Newton-type and
conjugate gradient solution algorithms [33] – the relative efficiency of finite elements becomes even more noti-
cable for finer meshes.
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In the range 0.652 6 v 6 1, both prolate (e.g. Figs. 5(b) and (c)) and oblate (e.g. Fig. 5(d)) shapes exist as
stable equilibrium configurations, but the prolate shapes are global energy minimizers. At v � 0.652, a dis-
continuous oblate/prolate transition occurs and for small v oblates have lower energy than prolates. In addi-
tion, the dashed line tracks stomatocyte shapes (e.g. Fig. 5(e)) which appear below the oblate/stomatocyte
transition at v � 0.591. It is noteworthy that the finite element simulations identified global energy minimiz-
ers at each chosen reduced volume, despite starting from a common sphere-like geometry. It is likely that
equilibrium shapes in other portions of the phase diagram corresponding to local (but not global minimiz-
ers), such as the oblate curve over 0.652 6 v 6 1, could be identified by ‘‘nudging’’ the conjugate gradient
solver toward the desired shape with a judicious choice of initial geometry. In fact, it was observed in the
simulations at lower reduced volume that the path of relaxation toward the minimum energy shape involved
nonequilibrium transitions between the different axisymmetric shapes as well as other nonaxisymmetric
shapes. Nonetheless, the ability of the solver to identify the global minima when not initialized with care-
fully chosen initial geometries can be viewed as encouraging evidence of the robustness of the present sim-
ulation framework.

5. Discussion

This paper has presented a framework for three-dimensional analysis of mechanics of lipid bilayer mem-
branes/vesicles based on the finite element method. Within this framework C1-conforming subdivision shell
finite elements are employed for smooth parameterization of membrane surfaces, and the classic Canham–
Helfrich–Evans curvature energy is minimized subject to constraints on surface area and enclosed volume.
To validate the framework, equilibrium shapes have been simulated sampling points in the shape-phase dia-
gram for varied reduced volumes.

Though the shapes resulting from these equilibrium calculations are axisymmetric, no assumption of axi-
symmetry is made a priori; on the contrary, the finite element framework is fully capable of computing non-
axisymmetric shapes as well. Of course, other methods are available for the calculation of nonaxisymmetric
shapes, including finite-difference triangulation methods [17–20], global Ritz methods [15,16], PDE methods
[22], and level set methods [24]. As demonstrated here, suitable accuracy can be obtained with meshes contain-
ing only hundreds of vertices, more than an order of magnitude fewer than required by finite-difference trian-
gulation methods [18,20], which have garnered the largest popularity in the literature for nonaxisymmetric
vesicle calculations. Global Ritz methods have been shown to attain suitable accuracy with about 100 modes,
on the same order as the finite element method here. The PDE method of Bloor and Wilson [22] is significantly
more efficient, requiring on the order of 5–10 basis functions.

Previous studies [28,29] have demonstrated the excellent convergence properties of the loop subdivision
shell elements as compared to alternative shell element formulations in traditional engineering applications.
Though it is reasonable to expect these results to apply in the present context as well, careful convergence stud-
ies comparing the performance of alternative finite element methods on bilayer problems remain to be done.
This future work may lead to alternative techniques for dealing with spurious modes using mixed-C0 or other
element formulations.

In addition to its excellent accuracy, the finite element method also benefits from locality of approxima-
tion. In the current work, this feature is not utilized to its capacity; however, it is potentially quite useful,
allowing for more natural simulation of complex forcing and geometric constraint scenarios. Application of
generic local forces and boundary conditions can be extremely difficult with global approximation methods.
Thus despite the computational efficiency of global Ritz, PDE, and level set methods, they are most appro-
priate for simulation of vesicles with only the simplest forces or geometric constraints applied (or none at
all). Only the relatively inefficient finite-difference triangulation method shares the local properties of the
finite element method. Locality can be extremely relevant, for example, when simulating vesicle adhesion
or application of forces by micropipette and optical/magnetic tweezer techniques. Local methods also hold
great potential for analysis of the increasingly voluminous library of geometric data obtained with cryo-elec-
tron microscopy (cryo-EM) and tomography (cryo-ET) techniques. Cryo-EM and -ET allow for direct
experimental observation of three-dimensional membrane conformations in biologically relevant contexts.
Their output is typically visualized by rendering membrane surfaces as triangulated meshes. Work is
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presently underway on the development of techniques for extraction of mechanical force information from
these data using finite difference and finite element frameworks. As another result of its locality, the finite
element approximation offers promise for mechanics simulation of vesicles composed of multiple lipid types,
modeling lipid concentration as a locally varying field. Some numerical work has focused on the Ginzburg–
Landau and Cahn–Hilliard dynamcis of two-component bilayers using finite-difference triangulation [38]
and Smooth Particle Applied Mechanics [39] methods. The finite element framework described here can
be extended straightforwardly to model the two-component lipid system, using the energy minimization
approach to complement previous studies of dynamics.

As discussed in Section 3.2, stabilization of tangential modes is key to the efficiency of the finite element
method presented here. For the present calculations, local enforcement of the global area constraint and
three-point numerical quadrature were shown to provide sufficient stabilization of zero-energy tangential dila-
tational modes for minimization with a nonlinear conjugate gradient algorithm. However, though minimiza-
tion was achieved, the process was significantly slowed by the remaining zero-energy tangential shearing
modes. Furthermore, it is plausible that the local area inextensibility may be overly restrictive for simulations
involving larger deformations than those experienced in the simulations of Section 4. In other words, in certain
contexts, the bilayer energy might be minimized more efficiently, by allowing the warpage of the mesh by
‘‘flowing’’ nodes out of regions of low curvature into regions of higher curvature. From this perspective,
the lack of a reference configuration for the bilayer mesh can be seen as a feature to be used as an advantage.
A virtual (i.e. physically meaningless) reference configuration can be used to introduce numerical forces and
stiffness to rearrange and stabilize the finite element nodes tangentially on the surface without adversely affect-
ing the energy landscape of the original membrane mechanics problem. Future work on such variational reme-
shing/regularization techniques will improve the effectiveness and efficiency of the finite element framework
for simulation of more challenging bilayer mechanics problems.

Finally, the finite element framework is also naturally suited for analysis of the composite membranes of
cells, in which the lipid bilayer is coupled mechanically to a cytoskeletal network. Indeed, for such a composite
membrane, the cytoskeleton provides the local in-plane extensional and shear stiffnesses that are lacked by the
fluid bilayer. In other words, the cytoskeleton behavior may be modeled more like a typical planar solid,
parameterized by reference and deformed configurations. Thus the numerical instabilities observed for the
pure bilayer vesicle are irrelevant for the composite membrane. Most theoretical models of cell deformation
have focused on Hertzian analysis of the bulk elastic/viscoelastic behavior. However, the membrane can have
an important mechanical effect [40]. Hence this finite element framework holds potential for future study of
less-idealized composite cell membranes. Yet, even after extension of the framework for such membranes is
complete, it is unlikely that the finite element approach will be the best choice for every membrane calculation.
Clearly, other existing methods are now and may remain superior in some cases (e.g. [22] for computing
unloaded equilibrium shapes, and [23,24] for simulating topological changes). Nevertheless, the advantages
of finite element approach make it a generally useful tool for probing the fascinating and challenging problems
of lipid bilayer membrane mechanics.
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